DEPARTMENT OF CHEMISTRY, RESEARCH GRANTS

Individual Research Grants received from different agencies:

S.No	Title of the	Funding	Sanctioned	Duration	Supervisor/Principal	No. of	Objectives	Out comes
	Project and	Agency	Amount	of the	investigator/Co-	Research		
	Sanction		(in Lakhs)	Project	investigator	Fellows/Man		
	Letter No					power		
	Computational Analysis of Mutational Effects on HIV-1 Antiretroviral Therapy and Target Oriented Synthesis of Potential Lead molecules	SERB	4200000	4 Years 2019- 2023	Principal Investigators Prof M Vijjullatha	2	A Comprehensive study on the sensitivity/resistance profile and failure of antiretroviral therapy (ART) due to regular mutations causing drug resistance will be computationally analyzed. High level reduced susceptibility for ATV with mutations on PI like I50L, I84V, and N88S; for LPV are I47A, V82 A/F/T/S and I84V. Reduced susceptibility for ATV being G48V/M, L90M; for	The docking results for the newly designed molecules provide additional hydrogen bond interactions with residues Val 27, Val 59 and Gly 60 along with His 62, Phe 32. The higher binding affinities of designed molecules N1, N2, N9 and N10 may be attributed to the additional hydrophobic interaction. 3D-QSAR studies, PHASE pharmacophore points, CoMFA and CoMSIA, field distribution are in good conformity with the structural

\$/\\/\\$/\\$/\\$/\\$/\\$/\\$/\\$/

-	,				
				DRV V32I, I50V,	1
				I54L/M, L76V and	active site of capsid
				I84V; for LPV	assembly inhibitors
				V32I, I50V,	that allows
				I54V/T/A/L/M,	conception of a
				L76V and I84V will	plausible template
				be checked by	1
				Computer Aided	
				Drug Design	CoMFA and CoMSIA model
				(CADD) techniques.	together with the
					application of
				Analysis of all	valuable clues from
				mutational effects of	
				HIV-1 RT on the	
				FDA approved drugs	variants are
				will be carried out.	
				Major NRTI	
				resistance observed	
				for 3TC and FTC for	1
				mutation at M184V/I	0
				in the region of non-	The comprehensive
				thymidine analog	study on the
				mutations (TAMs);	sensitivity/resistance
				K65R being TDF and	profiles of HIV-1
				ABC; L74V/I for	mutations has
				ABC and Y115F for	assisted in
				ABC. High level	understanding how
				reduced susceptibility	the mutations are
				observed in NNRTI	reducing the drug
				resistance mutations	affinity towards the
				L100I for EFV, ETR	proteins. The effects
				and RPV; K101E/P	of each HIV
				for NVP, EFV, ETR	protease mutation
				and RPV; K103N/S	on the binding
				-	
				for NVP/EFV;	studied by

		V106A/M for NVP, EFV; Y181C/I/V for NVP, ETR, RPV; Y188L/C/H for NVP; Y188L/C for EFV; Y188L for RPV; G190A/S/E/Q for NVP, EVP and M230L for NVP, EFV/RPV will be analyzed for the effect of mutations on approved drugs based on protein-ligand interactions. The target-oriented synthesis of new lead molecules that have shown better interactions with HIV- 1 PR and Hybrid Pyrimidine analogs that were designed based on the essential	performing <i>insilico</i> analysis using docking technique. The correlation between the computational & experimental data reveals that the computational protocol followed in this study might be valuable to predict drug resistivity profile associated with amino acid mutations. Based on the overall docking studies, mutants showed high sensitivity to saquinavir and high resistivity to fosamprenavir and tipranavir among 8 FDA approved
		interactions. The target-oriented synthesis of new lead molecules that have shown better interactions with HIV- 1 PR and Hybrid Pyrimidine analogs that were designed	mutations. Based on the overall docking studies, mutants showed high sensitivity to saquinavir and indinavir and high resistivity to fosamprenavir and tipranavir among 8
		such as HIV-1 PR, RT and HIV-1 CA proteins will be synthesized.	mutants providing a personalized treatment. This study helps the physician to prescribe selective drug strategy for the patients who are infected with HIV

				containing mutated
				HIV protease.
				Among the 25
				synthesized
				compounds except the
				compounds 2I, 2V
				and 2Y all compounds
				exhibit less
				concentration i.e.,
				better activity than the
				Standard AZT
				(Zidovudine), hence
				insilico design and
				synthesis paved the
				way for optimization
				of nearly potent
				molecules toward
				HIV-1.

1. Title of the project proposal: Layered Perovskites and Hollandites as visible light driven photocatalysts for degradation of

κ÷.

2. Funding Agency:	CSIR, New Delhi
3. Sanctioned amount (in Lakhs):	Rs.45.82
4. Duration of the Project:	3 years and 3 months
5. Principal Investigator: Dr. M. V	ithal, Department of Chemistry, O.U., Hyderabad – 500 007
e	d, Department of Physics, O. U., Hyderabad – 500 007 irathnam, Scientist F, Center for Materials for Electronics and Technology (CMET), Hyderabad-
6. Number research fellows/man po	wer: One
7. Objectives/Questions to be answe	ered:
The objectives of the project are	
(i) To synthesize layered perovskite	es and hollandites with (a) homogeneous size distribution and optimum particle size for catalytic
applications and (b) high chemical s	stability and tunable bandgap energy
(ii) To synthesize cation/anion dop splitting efficiency.	bed perovskites and hollandites to enhance the visible light photocatalytic activity and water
(iii). To study the photodegradation	of dye pollutants
8. Outcomes(a). One student got training in c(b). Publications:	lye degradation and water splitting studies.

 $1. Hydrothermal synthesis of C-doped K_2 Al_2 Ti_6 O_{16} as a visible light-activated photocatalyst in the degradation of organic dyes$

Gundeboina Ravi, P. Venkataswamy, M. Vithal

Journal of Australian Ceramic Society, 56 (2020), 1351-1358 Impact Factor: 1.741

2. Enhancement of photocatalytic activity of sodium bismuth titanate by doping with copper, silver and tin ions

Sreenu K, P. Venkataswamy, G. Ravi, CH. Sudhakar Reddy, B. Jaganmohan Reddy, and M. Vithal

Zeitschriftfüranorganische und allgemeineChemie, 2019, 645, 529-536

Impact Factor: 1.414

3.Ion exchange synthesis of Ag^+ incorporated LiAlO₂ and its application in photodegradation of organic dyes.

Gundeboina Ravi and M. Vithal SN Applied Sciences, 2019, 1, 164

Impact Factor: 2.8

4. Layered Na₂W₄O₁₃ and its Cation/anion doped analogues for the treatment of polluted water. Gundeboina Ravi, Srinivas Mamidi, Sreenu K, Pandiri Manjula, Kammara Vaishnavi, **M.Vithal**, Flat Chem., 2019, 13, 1–7

Impact Factor: 5.829

5. Synthesis, characterization, luminescence and photocatalytic studies of layered perovskites NaMMgWO₆ (M = La, Pr, Sm). Sreenu K, Gundeboina Ravi, CH Sudhakar Reddy, Ravinder Guje & M. Vithal. Indian Journal of Chemistry, 2018,57A, 435

Impact Factor -0.412

6. Aurivillius family of layered perovskites, BiREWO₆ (RE = La, Pr, Gd and Dy): Synthesis, characterization and photocatalytic studies. Srinivas Mamidi, Gundeboina Ravi, Sreenu K, RadhaVelchuri and M. VithalComptesRendus Chimie, 2018, 21, 547-552 Impact Factor: 3.117

List of publications (2016-2023) 2023:

66. Electrocatalytic Hydrogen Evolution by a Uranium(VI) Polyoxometalate: an Environmental Toxin for Sustainable Energy Generation

M. Sateesh, S. Asha, A. Ravi, P. Saha, A. Vinod Kumar, B. Sathyanarayana, **Muga Vithal**, and S. K. Das. Inorg. Chem. 2023, 62, 19664–19676. <u>https://doi.org/10.1021/acs.inorgchem.3c03018</u>. Impact Factor: 4.6

65. Synthesis, characterization and photocatalytic studies of visible light responsive $K_3MTe_3O_{12}$ (M = Cr, Fe and Ga) Gaddameedi Hima Bindu, Kadari Ramaswamy, Puppala Veerasomaiah, **Muga Vithal** Chemical papers 77 (2023) 7603-7614. **Impact Factor: 2.2**

64. Synthesis, characterization and photocatalytic studies of Ag^+ , Cu^{2+} and Sn^{2+} doped layered $Li_2Cd(PO_3)_4$ Pallati Srilekha, Kammara Vaishnavi, Gaddameedi Hima Bindu, AmarapuriTrinadh&M. Vithal, Inorganic and Nano-Metal Chemistry, 53 (2023) DOI: 10.1080/24701556.2023.2213226 Impact Factor: 1.7

63. *Photocatalytic degradation studies of carbon and sulfur-doped K2Ta2O6* Rani Angineni, Perala Venkataswamy, Naveen Kumar Veldurthi, Kadari Ramaswamy, Mannepalli Sudheera, and **Muga Vithal**, J Mater Sci: Mater Electron (2023) 34:633. <u>https://doi.org/10.1007/s10854-023-09973-9</u> **Impact Factor: 2.801**

62. Fabrication of Ag/AgBr/LaAl0.5Cr0.5O3 composite with enhanced photocatalytic performance for the degradation of methylene blue and 4-chlorophenol Gaddameedi Hima Bindu, Kadari Ramaswamy, AmarapuriTrinadh, Puppala Veerasomaiah, and **Muga Vithal**, J. Australian Ceramic society, 2023 <u>https://doi.org/10.1007/s41779-023-00842-6</u> **I mpact Factor: 1.9**

61. Synthesis and photoluminescence studies of Na323xLnxSbO (PO4)2 (Ln = Eu, Sm and Tb, and $0 \le x \le 0.1$ mol%) phosphors for white light emitting diodes

AmarapuriTrinadh, Koneti Srikanth, Kunja Laxminarayana, Pallati Srilekha, Muga Vithal, and Mudavat Srinivas, J Mater Sci: Mater Electron (2023) 34:83

https://doi.org/10.1007/s10854-022-09463-4 Impact Factor: 2.801

2022

60.*Preparation, characterization and photocatalytic studies of LaAl*_{0.5}*Fe*_{0.5}*O*₃, *LaAl*_{0.5}*Cr*_{0.5}*O*₃ and *LaCr*_{0.5}*Fe*_{0.5}*O*₃. Gaddameedi Hima Bindu, Vaishnavi Kammara, Pallati Srilekha, K.Swetha, Y. KalyanaLaxmi, P.Veerasomaiah and **Muga Vithal**, J. Mol. Structure, 2022, 134220 <u>https://doi.org/10.1016/j.molstruc.2022.134220</u>.

Impact Factor: 3.801

59. A Novel Approach for Generation of Oxygen Vacancies in Trirutile MnSb2O6 and Their Impact on Photocatalytic Degradation of MO Dye Manasa Sunku, Perala Venkataswamy, Gaddameedi Hima Bindu, Pallati Srilekha, M. Srinivas, and M. Vithal, European J of Inorganic chemistry, 2022, e202200550 https://doi.org/10.1002/ejic.202200550

Impact Factor: 2.3

58. Effect of Ag⁺, Cu²⁺ and Sn²⁺ Doping on Structural, Optical and Photocatalytic Properties of KGe_{0.5}Te_{1.5}O₆ with Defect Pyrochlore Structure Gaddameedi Hima Bindu, Manasa Sunku, Kadari Ramaswamy, Pallati Srilekha, Puppala Veerasomaiah and Muga Vithal, Chemistry Select, 7 (2022) e202202780, https://doi.org/10.1002/slct.202202780. Impact Factor: 2.307

57. Emission $(Gd^{3+} and Sm^{3+})$ and ESR (Gd^{3+}) studies of $La_{1-x}Ln_xB_3O_6$ $(Ln = Gd, Sm; 0 \le x \le 0.2$ for Gd; $0 \le x \le 0.1$ for Sm) phosphors

Kunja Laxminarayana, Koneti Srikanth, AmarapuriTrinadh, Pallati Srilekha, Muga Vithal, Mudavat Srinivas J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08786-6 Impact factor: 2.779

56. Preparation, Characterization and Photocatalytic Activity studies of Ag^+ , Cu^{2+} and Sn^{2+} -doped Li_2GeTeO_6 under Visible Light Irradiation

Vaishnavi Kammara, Perala Venkataswamy, Manasa Sunku, Kadari Ramaswamy, Gaddameedi Hima Bindu, Sudhakar Reddy Chandiri, M. Vithal

Adv. Mater. Lett. 13 (2022) 031703. Impact factor: NA

55. Preparation, characterization and photocatalytic studies of parent and ion-doped Li₂TiTeO₆ Kammara Vaishnavi, Perala Venkataswamy, Kadari Ramaswamy, Pallati Srilekha, **Muga Vithal** Materials Science in Semiconductor Processing 148 (2022) 106805 <u>https://doi.org/10.1016/j.mssp.2022.106805</u>. **Impact factor 4.644**

54. *Preparation, characterization and visible light photocatalytic studies of Ag/AgBr/Li*₂*ZrO*₃ *composite.* Vaishnavi Kammara, Perala Venkataswamy, G.Ravi, K. Ramaswamy, Manasa Sunku, **M. Vithal** Inorganic Chemistry Communications 141 (2022) 109504, <u>https://doi.org/10.1016/j.inoche.2022.109504</u> Impact Factor: 3.428

53. Facile ion-exchange synthesis of Gd-doped K₂Ta₂O₆ photocatalysts with enhanced visible light activity. Rani Angineni, Venkataswamy Perala, Ramaswamy Kadari, Srilekha Pallati, Sreenu Kurra, **M. Vithal** Journal of the Indian Chemical Society 99 (2022) 100495 **Impact Factor: 0.243**

52. Preparation, characterization and photocatalytic activity studies of transition metal ion doped $K_2Ta_2O_6$. Rani Angineni, Perala Venkataswamy, Kadari Ramaswamy, Shiv Raj, Naveen Kumar Veldurthi, **M. Vithal**. Polyhedron 214 (2022) 115620

Impact Factor (IF) – 2.975https://doi.org/10.1016/j.poly.2021.115620

51. *Ag*₂*VO*₂*PO*₄ *Nanorods: Synthesis, Characterization, Photoactivity & Antibacterial activity.* Vaishnavi Kammara, Perala Venkataswamy, Rani Angineni, G. Hima Bindu, Suresh Velpula, Karuna Rupula, **M. Vithal** Zeitschrift für anorganische und allgemeineChemie 648 (2022) e202100264 <u>https://doi.org/10.1002/zaac.202100264</u> **Impact Factor: 1.414**

2021

50. Preparation, Characterization and Photocatalytic activity studies of C- and N-doped CoSb₂O₆.

Manasa Sunku, Ravi Gundeboina, CH. Shilpa Chakra, Vimala Kaniki Reddy, **M. Vithal** Inorganic Chemistry Communications 134 (2021) 109064 **Impact Factor: 3.428** https://doi.org/10.1016/j.inoche.2021.109064

49. Optical characteristics of europium and terbium doped strontium orthogermanate phosphors. Koneti Srikanth, LavudiNarsihma, Kunja Laxminarayana, **M. Vithal**, Mudavat Srinivas Journal of Indian Chemical Society 98 (2021) 100237 **Impact Factor: 0.243**

48. *Photocatalytic degradation of methylene blue over N-doped MnWO*₄ *under visible light irradiation.* K. Sravan Kumar, Kammara Vaishnavi, Perala Venkataswamy, Gundeboina Ravi, Kadari Ramaswamy, **M. Vithal**, J. Ind. Chem. Soc. 98 (2021) 100140 Impact Factor: 0.243

47. Facile Ion Exchange Synthesis of Ag, Cu, and Sn Incorporated Defect Pyrochlore K₂Ta₂O₆ towards Visible-Light-Responsive Photocatalytic Activity.
Rani Angineni, Jyothsna Angineni, Naveen Kumar Veldurthi, Perala Venkataswamy, M. Vithal Chemistry Select 6 (2021) 8306-8314
Impact Factor: 2.307

46. Transition metal ion (Ni²⁺, Cu²⁺ and Zn²⁺) doped defect pyrochlore, KTaTeO₆: Synthesis, characterization and photocatalytic studies
M. Sudheera, P. Venkataswamy, K. Ramaswamy, G. Ravi, N. Chittibabu, M. Vithal
Indian Journal of Chemistry -Section A (IJC-A), (2021),
Impact Factor: 0.412
2020

45. Synthesis of Nitrogen-doped KTaTeO₆ with Enhanced Visible Light Photocatalytic Degradation of Methylene Blue M. Sudheera, P. Venkataswamy, G. Ravi, K. Ramaswamy, N. Chitti Babu, **M. Vithal** Advanced Materials Letters 12 (2020) 21041621 (1-10)

44. Synthesis, characterization and photocatalytic dye degradation studies of novel defect pyrochlore, KHf_{0.5}Te_{1.5}O₆, M. Sudheera, G. Ravinder, G. Ravi, P. Venkataswamy, K. Vaishnavi, N. Chittibabu, **M. Vithal**

Indian Journal of Chemistry -A (IJC-A), 59 (2020), 1092-1099, Impact Factor (IF) – 0.412

43. *Hydrothermal synthesis of C-doped K*₂ $Al_2Ti_6O_{16}$ as a visible light–activated photocatalyst in the degradation of organic dyes Gundeboina Ravi, P. Venkataswamy, **M. Vithal** Journal of Australian Ceramic Society, 56 (2020), 1351-1358, **Impact Factor : 1.741**

42. Biosynthesis of CMC-Guar gum-Ag nanocomposites for inactivation of food pathogenic microbes and its effect on the shelf life of strawberries
Vimala Kanikireddy, KokkaracheduVaraprasad, M. Sandhya Rani, P. Venkataswamy, Boggu Jaganmohan Reddy, M. Vithal
Carbohydrate Polymers 236 (2020) 116053
Impact Factor : 10.723
https://doi.org/10.1016/j.carbpol.2020.116053

41. A New Ag/AgBr/LaAlO₃ Plasmonic Composite: Synthesis, Characterization, and Visible-light Driven Photocatalytic Activity P. Venkataswamy, M. Sudheera, K. Vaishnavi, K. Ramaswamy, G. Ravi, **M. Vithal** Journal of Electronic Materials 49 (2020) 2358–2370 Impact Factor : 2.047

40. *Cr-doped CeO*₂ *Nanorods for CO Oxidation: Insights into Promotional Effect of Cr on Structure and Catalytic Performance* P. Venkataswamy, D. Devaiah, D. Jampaiah, D. Mukherjee, **M. Vithal**, B. M. Reddy, Catalysis Letters 156,2020, 948-962 **Impact Factor : 2.936**

2019

39. Synthesis and Impedance studies of potassium bismuth tri phosphate electrolyte
C. Shankaraiah, V. Gangadhar, M. Vithal, G. Prasad
Materials Today: Proceedings 11 (2019) 1024–1029
Impact Factor (IF) – NA

38. Effect of ion (Ag^+, N^{3-}) doping on the photocatalytic activity of Ruddlesden-Popper type layered perovskite $K_2Nd_2Ti_3O_{10}$

K. Ramaswamy, G. Ravi, P. Venkataswamy, V. Radha, N.R. Muniratnam, **M. Vithal** ComptesRendus Chimie, 2019, 22, 667-677. **Impact Factor : 3.117**

37. Carbon nanospheres supported visible-light-driven ZnSb2O6: Synthesis, Characterization and photocatalytic degradation studies
S. Manasa, G. Ravi, P. Venkataswamy, K. Vaishnavi and M. Vithal
SN applied Sciences, 1 (2019) 1046-1057

Impact Factor - 2.8

36. Enhancement of photocatalytic degradation of an organic pollutant by WO₃ nanopowders: carbon doping, Vasanthi Pillay, Gundeboina Ravi and Vithal Muga, Indian Journal of Chemistry, 58A (2019) 763-771 IF- 0.412

35. Fabrication of Novel Ag/AgBr/Cs₂Nb₄O₁₁ Ternary Composite for Visible-Light Driven Photocatalysis Perala Venkataswamy, Manasa Sunku, Ravi Gundeboina, Radha Velchuri and **M. Vithal** Catalysis Letters, 2019, 149, 2332–2346 **IF : 2.936**

34.*Potassium Zirconium Oxalate: A novel precursor for the preparation of perovskite, pyrochlore and Nasicon type materials* M. Malathi, Kammara Vaishnavi, G. Ravi, Manasa Sunku and **M. Vithal** Journal of Solid State Chemistry2019, 276, 133-138 **IF – 3.656**

33. Enhancement of photocatalytic activity of sodium bismuth titanate by doping with copper, silver and tin ions Sreenu K, P. Venkataswamy, G. Ravi, CH. Sudhakar Reddy, B. Jaganmohan Reddy, and **M. Vithal** Zeitschriftfüranorganische und allgemeineChemie, 2019, 645, 529–536 **IF : 1.414**

32.Ion exchange synthesis of Ag^+ incorporated LiAlO₂ and its application in photodegradation of organic dyes. GundeboinaRaviand**M. Vithal** SN Applied Sciences, 2019, 1, 164

IF – 2.8

31. Layered Na₂W₄O₁₃ and its Cation/anion doped analogues for the treatment of pollutedwater.Gundeboina Ravi, Srinivas Mamidi, Sreenu K, PandiriManjula, KammaraVaishnavi,**M**. **Vithal,** Flat Chem., 2019, 13, 1–7

IF : 5.829

30. Development of alginate – gum acacia - Ag^0 nanocomposites via green process for inactivation of foodborne bacteria and impact on shelf life of black grapes (Vitisvinifera)

VimalaKanikireddy, K.Kanny, Y.Padma, RadhaVelchri, Gundeboina Ravi, B. Jagan Mohan Reddy, and Muga Vithal, J. Appl. Polym. Sci. 2019, 136, 47331

IF: 3.057

2018

29. ZnO-Nanoparticles Decorated On CeO₂ Nanorods: An Efficient Catalyst For The Co Oxidation. Perala Venkataswamy, Damma Devaiah, Deboshree Mukherjee, **Muga Vithal**, Benjaram M. Reddy Catalysis in Green Chemistry and Engineering 2018, 1, 293-306 **IF – Not Available**

28. Nanocrystalline Mn-doped and Mn/Fe co-doped Ceria Solid Solutions for Low Temperature CO Oxidation. Perala Venkataswamy, Deboshree Mukherjee, Damma Devaiah, M. Vithal, B. M. Reddy. Current Nanomaterials 2018, 3, 103-113 IF – Not Available

27. Urea-Modified ZnWO4 with Enhanced Photocatalytic Activity. Srinivas Mamidi, Gundeboina Ravi, Sreenu K and M. Vithal. Journal of the Australian Ceramic Society, 2018, 54, 671-678 IF: 1.741

26. A Facile in-situ Hydrothermal Route to Construct a Well-Aligned β -Ag₂MoO₄/g-C₃N₄ Heterojunction with Enhanced Visible Light Photodegradation:Mechanistic Views. Pandiri Manjula, RadhaVelchuri, Gundeboina Ravi and **Muga Vithal** Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360,231-241 **IF : 5.141**

25. Synthesis, characterization, luminescence and photocatalytic studies of layered perovskites NaMMgWO₆ (M = La, Pr, Sm).
 Sreenu K, Gundeboina Ravi, CH Sudhakar Reddy, Ravinder Guje & M. Vithal. Indian Journal of Chemistry, 2018, 57A, 435
 IF-0.412

24. Nanostructured KTaTeO₆ and Ag-doped KTaTeO₆ defect pyrochlores: Promising photocatalysts for dye degradation and water splitting. Perala Venkataswamy, CH. Sudhakar Reddy, Ravi Gundeboina, GullapelliSadanandam, Naveen Kumar Veldurthi, M. Vithal

Electronic Materials Letters, 2018, 14, 446-460 IF : 3.151

23. Aurivillius family of layered perovskites, BiREWO₆ (RE = La, Pr, Gd and Dy): Synthesis, characterization and photocatalytic studies. Srinivas Mamidi, Gundeboina Ravi, Sreenu K, RadhaVelchuri and M. Vithal ComptesRendus Chimie, 2018, 21, 547-552 IF : 3.117

22. Transition (Mn, Fe) and rare earth (La, Pr) metal doped ceria solid solutions for high performance photocatalysis: Effect of metal doping on catalytic activity.

PeralaVenkataswamy, DeshettiJampaiah, Ahmad EsmaielzadehKandjani, Ylias M. Sabri, Benjaram M. Reddy, and M. Vithal. Research on Chemical Intermediates 2018, 44, 2523-2543, IF: 3.134

2017

21. Nanostructured Titania-Supported Ceria–Samaria Solid Solutions: Structural Characterization and CO Oxidation Activity.
Perala Venkataswamy, Damma Devaiah, KunchamKuntaiah, M. Vithal, Benjaram M. Reddy.
Catal.Lett.2017, 147, 2028-2044
IF: 2.936

20.*Characterization and evaluation of biological and photocatalytic activities of selenium nanoparticles synthesized using yeast fermented broth*.K. Gnaneshwar Goud, Naveen Kumar Veldurthi, **M Vithal**, Gopal Reddy.Appl. Nanomed. 2016, 1(1), 12-19. **IF-NA**

19. Low temperature synthesis of fluorite – type Ce based oxides of composition Ln2Ce2O7 (ln = Pr, Nd and Eu): Photodegradation and luminescence studies. Malathi, M.; Sreenu, K.;Ravi, Gundeboina; Vijaya Kumar,P.; Sudhakar Reddy,CH.;

Ravinder, Guje;Radha, Velchuri; Vithal, M. Journal of Chemical Sciences 2017, 129, 1193-1203. IF: 2.15

18. Tailoring the luminescence and photocatalytic activity of $KMn_4(PO_4)_3$ by Anions (N^{3-} and S^{2-}) doping. Sudhakar Reddy,CH.; Ravi, G.; Venkataswamy,P.;Sreenu K; UzmaBaig;**VithalM.**Journal of Chemical Technology and Biotechnology 2017, 92, 2746

IF: 3.709

17. Photocatalytic and DC conductivity studies of proton exchanged $KAl_{0.33}W_{1.67}O_6$ and its application in Pb^{2+} removal. Srinivas, M.; Ravi, G.; Vijaya Kumar, P.; Sudhakar Reddy, CH.; Sreenu K; Ravinder Guje; Vithal, M. Indian Journal of Chemistry, 2017, 56A, 270. IF - 0.412

16. Low-temperature synthesis of Cr₂WO₆ and its enhanced photocatalytic activity by N-doping.Sravan Kumar, K.; Ravi, G.; Sreenu, K.;, Ravinder, G.; Vithal, M. Indian Journal of Chemical technology 2017, 24, 32.

IF: 0.760

15. Cation and Anion Substituted Potassium Manganese Phosphate, KMnP₃O₉: Luminescence and Photocatalytic studies. Sudhakar Reddy, CH.; Ravi, G.; Sreenu K; RavinderGuje; Malathi, M; Vithal, M. Photochem. Photobiol., 2017, 93, 569. IF : 3.521

2016

14. Synthesis, characterization and photocatalytic activity studies of tellurium containing defect pyrochlores, $MSn_{0.5}Te_{1.5}O_6$ (M = K, Ag, $Cu_{0.5}$ and $Sn_{0.5}$). Ravinder Guje; Ravi Gundeboina; Ramaswamy Kadari; Sreenu K; Sudhakar Reddy,CH.;Malathi,M.;RadhaVelchuri;**Muga Vithal.** Indian Journal of Chemistry, 2016, 55A, 1174. IF - 0.412

13. Degradation of organic pollutants by Ag, Cu and Sn doped Waste Printed Circuit Boards. Kadari Ramaswamy; VelchuriRadha; M. Malathi; MunirathnamNagegownivari; **Muga Vithal**. Waste Management 2016, 60, 629. IF : 8.816

12. Synthesis, Characterization and tin/copper – nitrogen substitutional effect on Photocatalytic activity of honeycomb ordered P2-

*Na*₂*Ni*₂*TeO*₆. Kadari, Ramaswamy; Velchuri Radha; Sreenu K; Ravi Gundeboina; MunirathnamNagegownivari; **Muga Vithal**. Materials Research Express 2016, 3,115902. **IF : 2.025**

11. Fabrication and Visible-light induced Photocatalytic Activity of NaNbO3 Oriented

Composite Photocatalyst Coupled with N-NaNbO₃ and V-NaNbO₃. Naveen Kumar, V.; Reddy, J.R.; Ravi, G.; Ravinder, G.;Radha, V.; Venkata Swamy, P.; Vithal, M. Chemistry Select 2016, 1, 2783. IF : 2.307

10. Facile room temperature ion exchange synthesis of H^+ doped $KM_{0.33}Te_{1.67}O_6$ (M = Al, Cr and Fe) and their photocatalytic and conductivity studies. Ravinder G.; Reddy, J.R.; Sudhakar Reddy, CH.; Sreenu, K.; Ravi, G.; **Vithal, M.** Advanced Materials Letters 2016,7, 536 **IF -1.43**

9. Degradation of Methylene blue and Rhodamine B using a new visible light responsive photocatalyst, KSb₂PO_{8-x}N_y.Ravi, G.; Sudhakar Reddy, CH.; Sreenu, K.; Ravinder G.; Radha, V.; Vithal, M.ActaMetallurgica Sinica (English Letters) 2016, 29, 235.

IF: 3.024

8. Preparation, characterization and photocatalytic studies of Cu^{2+} , Sn^{2+} and N^{3-} substituted $K_5Sb_5P_2O_{20}$. Sudhakar Reddy, CH.; Sreenu, K.; Reddy, J.R.; Hari Padmasri, A; Ravi, G.; Vithal, M. Journal of Chemical Sciences 2016, 128, 663.

IF: 2.15

7. A series of novel double perovskite oxides $NaMTi_2O_6$ (M = Eu, Sm, and Gd): Preparation, characterization and photocatalytic studies under visible and solarlightirradiation. Sreenu, K.; Naveen Kumar, V; Reddy, J.R.; Sudhakar Reddy, CH.; Vithal, M.Journal of Materials Science: Materials in Electronics 2016, 27, 4194 IF : 2.779

6. Enhanced photoactivity of Antimony Phosphates by substitution of H^+ , Cu^{2+} and N^{3-} in the $K_3Sb_3P_2O_{14.}xH_2O$ crystal lattice. Sreenu, K.; Sudhakar Reddy, CH.; Reddy, J.R.; Radha, V: Suresh, P.; Vithal, M. Research on Chemical Intermediates 42, 2016, 5765. IF : 3.134 5. Photocatalytic degradation of Methylene blue and Methyl violet using cation doped $(Sn^{2+} and Ag^{+})$ barium tellurite phosphate, Ba₂TeO(PO₄)₂.Sudhakar Reddy, CH.;, Sreenu, K.; Reddy, J. R.; Ravi, G.; Ravinder, G.; Malathi, M.; Vithal, M. Indian Journal of Chemistry 2016, 55A, 9.

IF- 0.412

4. Synthesis, characterization and photocatalytic activity of Ag^+ and Sn^{2+} doped $KTi_{0.5}Te_{1.5}O_6$. Ravinder, G.;Ravi, G.;Reddy, J. R.; Naveen Kumar, V.; Sreenu, K.; Vithal, M. Photochem. Photobiol. 2016, 92, 223. IF : **3.521**

3. Synthesis, characterization, luminescence and electrical conductivity of the metal ions (M) doped KAl_{0.33}W_{1.67}O₆. Ravi, G.;
 Sravan Kumar, K.; Ravinder, G.; Sreenu, K.; Prasad, G.; Vithal, M. Journal of Solid State Chemistry 2016, 233, 342.
 IF- 3.656

2. Preparation and characterization of nitrogen doped K2M2Ti6O16 (M = Cr and Fe) with enhanced photocatalytic activity. Ramakrishna, S.; Mahender, N.; Reddy, J. R.;, Sreenu, K.; Nagabhushan, N.; Vithal, M. Indian Journal of Chemistry 2016, 54A, 1026. IF-0.412

1. Enhanced visible light photocatalytic activity of Sn doped Bi₂WO₆ nanocrystals B.Vijayakumar, Muvva D Prasad, **M.Vithal**, Materials Letters, 152, 2015,200-202 IF: 3.574

Prof. SHIVARAJ(UGC-BSR Faculty Fellow),

Department of chemistry,

Osmania University.

Research project sanctioned and in progress from 2018 onwards:

S.N	Title of the project and	Funding	Sanctione	Duratio	Supervisor	No of	Objectives	Outcome
0	Sanctioned Letter No.	Agency	d amount	n of the	/	research		S
			in (lakhs)	project	Principal	fellows/		
					Investigato	manpow		
					r/ Co-	er		
					investigato			
					r			
1.	"Studies on crystal structure,	UGC-	15,00,000	3 years	Dr.	SWATH	1. Preparation of	4were
	DNA interactions, cytotoxic	BSR	/-		Shivaraj	IM	Schiff bases by	published
	and antibacterial activity of	faculty				joined as	condensation of 5-	and 1
	5-cyclohexyl-2-	fellowsh				a project	cyclohexyl-2-	paper has
	methixybenzenamine Schiff	ip				fellow on	methoxybenzenam	been
	Bases and their bivalent					07-02-	ine with	accepted
	metal Complexes"					2022	substituted	for
	&					.She has	salicylaldehydes	publicati
	26-13/ 2020 (BSR)					been	and their bivalent	on from
						awarded	(M(II) where M=	the
						on 29-6-	Co, Ni, Cu, Zn and	project
						2024.	Ruetc) transition	

			metal complexes.	
			2. Characterization	
			of the above Schiff	
			bases and their	
			metal complexes	
			by elemental	
			analysis	
			elemental analysis,	
			UV, IR, NMR,	
			ESR, TGA, Mass,	
			magnetic	
			susceptibilities and	
			single crystal XRD	
			analysis.	
			3. Testing the	
			schiff bases and	
			their metal	
			complexes for	
			biological activity	
			such as antifungal,	
			antibacterial,	
			antioxidant,	
			-	

1.

							 antimalarial, antituberculosis, anti-diabetic and cytotoxic activity. 4. DNA binding and cleavage studies of Schiff bases and their metal complexes. 	
2.	"Synthesis, Characterization, Antimicrobial activity, DNA cleavage and Crystal studies of mixed ligand Copper (II) Complexes of Isoxazole Schiff Base and heterocyclic compounds" & 002/OU/UPE/FAR/CO/2 013	UGC- UPE- FAR	23,57,046	5 years	Dr.Shivara j	1. Student G. Nirmala was joined as a project fellow on 01-01- 2014 .She has	1. Preparation of Schiff bases by condensation of 5- amino-3,4 dimethyl isoxazole with heterocyclic aldehydes / substituted salicylaldehydes and their Cu(II) complexes.	were published from the

		been	2. Preparation of
		awarded	Binary and ternary
		on 16-6-	metal complexes.
		2020.	3. Single crystal
			development of
			the above ligands
			and their metal
			complexes by
			various single
			crystal
			development
			methods
			4. Characterization
			of the above
			ligands and their
			metal complexes
			by elemental
			analysis, TG,
			DTA, IR, NMR,
			ESR, Mass,
			Electronic
			Spectroscopic

		methods, magnetic
		susceptibilities and
		XRD studies .
		5. Testing the
		ligands and
		their metal
		complexes for
		antimicrobial
		activity such as
		antifungal,
		antibacterial
		activity.
		6. DNA binding
		and cleavage
		studies by
		absorption
		titration,
		viscometric
		titration and Gel
		electrophoresis
		methods.

1.

3.	"Court and the stars to and	DST-	33,69,200	5 years	Dr.Shivaraj	1 Student	1. Preparation of	4 papers
	"Synthesis, structural antimicrobial,cytotoxic and	SERB				Daravat	Schiff bases by	were
	DNA interaction studies of					h Sreenu	condensation of 5-	published
	bivalent transition metal mixed ligand complexes with					was	amino-3,4	from the
	bioactive benzothiozole					joined as	dimethyl isoxazole	project.
	Schiff bases and other ligands"					a project	with heterocyclic	
	inguinds					fellow on	aldehydes /	
						01-01-	substituted	
	&					2014.He	salicylaldehydes	
						has been	and their Cu(II)	
	DST-SERB SB/EMEQ-					awarded	complexes.	
	(141/2014)					on 16-6-	2. Preparation of	
						2020.	Binary and ternary	
							metal complexes.	
							3. Single crystal	
							development of	
							the above ligands	
							and their metal	
							complexes by	
							various single	
							crystal	
							development	

			methods	
			4. Characterization	
			of the above	
			ligands and their	
			metal complexes	
			by elemental	
			analysis, TG,	
			DTA, IR, NMR,	
			ESR, Mass,	
			Electronic	
			Spectroscopic	
			methods, magnetic	
			susceptibilities and	
			XRD studies .	
			5. Testing the	
			ligands and	
			their metal	
			complexes for	
			antimicrobial	
			activity such as	
			antifungal,	
			antibacterial	

			activity.	
			6. DNA binding	
			and cleavage	
			studies by	
			absorption	
			titration,	
			viscometric	
			titration and Gel	
			electrophoresis	
			methods.	

No. of candidates awarded Ph.D degree from 2018 onwards: 16

S. No.	Name of the Candidate	Date of award
1.	Swathi M	29-06-2024

2	Tejaswi somapangu	19-06-2024
3.	Dasari Shiva Shankar	18-03-2023
4.	N. Jyothi	05-01-2023
5.	Kadasi Sandeep	01-11-2022
6.	Sreenu Daravath	3-11-2021
7.	Gurrala Sunitha	7 th October 2021
8.	V. Sumalatha	11 th June, 2021
9.	S. Sandhya Rani	17 th April, 2021
10.	K. Venkateshwarlu	01 April, 2021
11.	Ganga Rajam	18 th June 2020
12.	Nirmala Ganji	18 th June 2020
13.	Gali Ramesh	13 Dec, 2019
14.	Sravanthi Siliveri	13 Dec, 2019
15.	Aveli Rambabu	25 May, 2018
16.	NarendulaVamshikrishana	23 Feb, 2018

7.

No. of publications: 31

List of publications from the above mentioned projects

- 1. M. Swathi, Dasari Ayodhya, Shivaraj, Synthesis, characterization, investigation of DNA interactions and biological evaluation of Co(II), Ni(II), Cu(II) and Zn(II) complexes with newly synthesized 2-methoxy 5-trifluoromethyl benzenamine Schiff base, J.Flourec.(2024).(accepted)
- M. Swathi, DasariAyodhya, Shivaraj, Design, structural characterization, DNA interaction studies, antibacterial, antioxidant, and cytotoxicity studies of Co(II), Ni(II), Cu((II), Zn(II) complexes containing 2-methoxy 5trifluoromethyl benzenamine Schiff base, Res. Chem. 7 (2024) 101231.
- N. Jyothi, Sreenu Daravath, M. Swathi, K Jagadeshbabu, NirmalaGanji, Shivaraj, Synthesis, geometry optimization and non-isothermal kinetic parameters ofcopper(II), nickel(II) and cobalt(II) complexes of 5-(trifluoromethyl)-2methoxybenzenamine: DNA binding, cytotoxicity, cantioxidant and antimicrobial activity, J. Mol. Struct. 1295 (2024) 136529.
- M. Swathi, D. Shiva Shankar, S. Daravath, N. Ganji, P.V.AnanthaLakshmi, Shivaraj, Computational studies, Cytotoxicity, DNA interactions of bioactive novel 2-methoxy 5-trifluoromethylbenzenamine Schiff base metal complexes, Inorganic Chemistry Communications 153(2023)110826.
- K. JagadeshBabu, SreenuDaravath, M. Swathi, DasariAyodhya, Shivaraj, Synthesis, anticancer, antibacterial, antifungal, DNA interactions, ADMET, molecular docking, and antioxidant evaluation of novel Schiff base andtheir Co(II), Ni(II) and Cu(II) complexes Res. Chem. 6(2023)101121.
- 6. Exploration of DNA interaction, antimicrobial and antioxidant studies on binary transition metal complexes with isoxazole

Schiff bases: Preparation and spectral characterization, NirmalaGanji, SreenuDaravath, AveliRambabu, KadtalaVenkateswarlu, Dasari Shiva Shankar and Shivaraj*, *Inorganic Chemistry Communications*, *121* (2020) 108247.

- Structure elucidation of copper(II), cobalt(II) and nickel(II) complexes of benzothiazole derivatives: Investigation of DNA binding, nuclease efficacy, free radical scavenging and biocidal properties, Dasari Shiva Shankar, Nirmala Ganji, SreenuDaravath, KadtalaVenkateswarlu, Shivaraj*, Chemical Data Collections, ISSN: 2405-8300, (2020), 28, 100439,DOI: 10.1016/j.cdc.2020.100439 (Impact Factor- 2.063)
- Structure elucidation of copper(II), cobalt(II) and nickel(II) complexes of benzothiazole derivatives: Investigation of DNA binding, nuclease efficacy, free radical scavenging and biocidal properties, SreenuDaravath, Aveli Rambabu, Dasari Shiva Shankar, Shivaraj*, Chemical Data Collections, ISSN: 2405-8300, (2019), 24, DOI: <u>10.1016/j.cdc.2019.100293</u>, 100293, (Impact Factor-2.063).
- Synthesis, structural characterization, antioxidant, antimicrobial, DNA incision evaluation and binding investigation studies on copper(II) and cobalt(II) complexes of benzothiazole cored Schiff bases, SreenuDaravath, Aveli Rambabu, NarendrulaVamsikrishna, Nirmala Ganji and Shivaraj*, Journal of Coordination Chemistry, ISSN: 0095-8972, (2019), 72, 1973-1993, DOI: 10.1080/00958972.2019.1634263, (Impact Factor-1.9).

 Copper(II) complexes with isoxazole Schiff bases: Synthesis, spectroscopic investigation, DNA binding and nuclease activities, antioxidant and antimicrobial studies. N. Ganji, A. Rambabu, N. Vamsikrishna, S. Daravath, Shivaraj*, J MolStruct, 1173 (2018) 173-182.

- 11. DNA incision evaluation, binding investigation and biocidal screening of Cu(II), Ni(II) and Co(II) complexes with isoxazole Schiff bases. N. Ganji, V.K. Chityala, M.P. Kumar, A. Rambabu, N. Vamsikrishna, S. Daravath, Shivaraj, J. Photochem. Photobiol. B Biol, 175 (2017) 132-140.
- 12. Crystal Structure, Spectral Characterization, Biological and DNA Binding Studies of Cu(II) Mixed Ligand Complexes of 5-Amino-3, 4-Dimethyl Isoxazole Schiff Bases and Heterocyclic Compounds. Ch. Vijay Kumar, M. Pradeep Kumar,

NirmalaGanji, D. Anil Kumar, S.S. Singh, P. Raghavaiah and Shivaraj*. *Russian Journal of Coordination Chemistry*. 43 (5) (2017) 275-289.

13. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of -amino benzothiazole derivatives. Sreenu Dravath, Marri Pradeep Kumar, NarendrulaVamsikrishna, Nirmala Ganji, and Shivaraj*. Journal of Molecular Structure, ISSN: 0022-2860, (2017), 1144 (15) 47-158, DOI: 10.1016/j.molstruc.2017.05.022, (Impact Factor-3.8).

List of publications acknowledged the above mentioned projects

- 1. M. Swathi, Dasari Ayodhya, Shivaraj, Synthesis, characterization, investigation of DNA interactions and biological evaluation of Co(II), Ni(II), Cu(II) and Zn(II) complexes with newly synthesized 2-methoxy 5-trifluoromethyl benzenamine Schiff base, J.Flourec.(2024).(accepted)
- M. Swathi, DasariAyodhya, Shivaraj, Design, structural characterization, DNA interaction studies, antibacterial, antioxidant, and cytotoxicity studies of Co(II), Ni(II), Cu((II), Zn(II) complexes containing 2-methoxy 5trifluoromethyl benzenamine Schiff base, Res. Chem. 7 (2024) 101231.
- N. Jyothi, Sreenu Daravath, M. Swathi, K Jagadeshbabu, NirmalaGanji, Shivaraj, Synthesis, geometry optimization and non-isothermal kinetic parameters ofcopper(II), nickel(II) and cobalt(II) complexes of 5-(trifluoromethyl)-2methoxybenzenamine: DNA binding, cytotoxicity, cantioxidant and antimicrobial activity, J. Mol. Struct. 1295 (2024) 136529.

- M. Swathi, D. Shiva Shankar, S. Daravath, N. Ganji, P.V.AnanthaLakshmi, Shivaraj, Computational studies, Cytotoxicity, DNA interactions of bioactive novel 2-methoxy 5-trifluoromethylbenzenamine Schiff base metal complexes, Inorganic Chemistry Communications 153(2023)110826.
- 5. Dasari Shiva Shankar, AveliRambabu, Swathi M, P. V. AnanthaLakshmi, and Shivaraj, Copper(II) Complexes Derived

from Schiff Bases Containing4-Methylbenzylamine as a Core Unit: Cytotoxicity, pBR322-DNA Studies, Biological Assays, and Quantum Chem-ical Parameters, chem. Biodiversity 2023, e202300030

- K. JagadeshBabu, SreenuDaravath, M. Swathi, DasariAyodhya, Shivaraj, Synthesis, anticancer, antibacterial, antifungal, DNA interactions, ADMET, molecular docking, and antioxidant evaluation of novel Schiff base andtheir Co(II), Ni(II) and Cu(II) complexes Res. Chem. 6(2023)101121.
- K. Jagadesh Babu, DasariAyodhya, Shivaraj, Comprehensive investigation of Co(II), Ni(II) and Cu(II) complexes derived from a novel Schiff base: Synthesis, characterization, DNA interactions, ADME profiling, molecular docking, and in-vitro biological evaluation. Res. Chem. 6(2023)101110.

 Exploration of DNA interaction, antimicrobial and antioxidant studies on binary transition metal complexes with isoxazole Schiff bases: Preparation and spectral characterization, NirmalaGanji, SreenuDaravath, AveliRambabu, KadtalaVenkateswarlu, Dasari Shiva Shankar and Shivaraj*, *Inorganic Chemistry Communications*, 121 (2020) 108247.

- Structure elucidation of copper(II), cobalt(II) and nickel(II) complexes of benzothiazole derivatives: Investigation of DNA binding, nuclease efficacy, free radical scavenging and biocidal properties, Dasari Shiva Shankar, Nirmala Ganji, SreenuDaravath, KadtalaVenkateswarlu, Shivaraj*, Chemical Data Collections, ISSN: 2405-8300, (2020), 28, 100439,DOI: 10.1016/j.cdc.2020.100439 (Impact Factor- 2.063)
- Synthesis, structural characterization, DNA interaction, antibacterial and cytotoxicity studies of bivalent transition metal complexes of 6-aminobenzothiazole Schiff base. NarendrulaVamsikrishna, SreenuDaravath, NirmalaGanji, Nayeem Pasha, Shivaraj*. Inorganic ChemistryCommunications, 113 (2020) 107767.
- 11. Evaluation of DNA interaction, free radical scavenging and biologically active compounds of thermally stable ptolylmethanamine Schiff bases and their binary Co(II) and Ni(II) complexes, Dasari Shiva Shankar, NirmalaGanji, SreenuDaravath, KadtalaVenkateswarlu and Shivaraj*, Chemical Data Collections 28 (2020) 100439.
- 12. Investigation on Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from quadridentatesalen-type Schiff base: Structural

characterization, DNA interactions, antioxidant proficiencyand biological evaluation, Gali Ramesh, SreenuDaravath, M Swathi, V. Sumalatha, Dasari Shiva Shankar, Shivaraj*, Chemical Data Collections, 28 (2020) 100434.

- 13. Structure elucidation of copper(II), cobalt(II) and nickel(II) complexes of benzothiazole derivatives: Investigation of DNA binding, nuclease efficacy, free radical scavenging and biocidal properties, SreenuDaravath, AveliRambabu, Dasari Shiva Shankar, Shivaraj*, Chemical Data Collections, 24 (2019) 100293.
- Structure elucidation of copper(II), cobalt(II) and nickel(II) complexes of benzothiazole derivatives: Investigation of DNA binding, nuclease efficacy, free radical scavenging and biocidal properties, SreenuDaravath, Aveli Rambabu, Dasari Shiva Shankar, Shivaraj*, Chemical Data Collections, ISSN: 2405-8300, (2019), 24, DOI: 10.1016/j.cdc.2019.100293, 100293, (Impact Factor-2.063).
- 15. Synthesis, structural characterization, antioxidant, antimicrobial, DNA incision evaluation and binding investigation studies on copper(II) and cobalt(II) complexes of benzothiazole cored Schiff bases, SreenuDaravath, Aveli Rambabu, NarendrulaVamsikrishna, Nirmala Ganji and Shivaraj*, Journal of Coordination Chemistry, ISSN: 0095-8972, (2019), 72, 1973-1993, DOI: 10.1080/00958972.2019.1634263, (Impact Factor-1.9).

16. Copper(II) complexes with isoxazole Schiff bases: Synthesis, spectroscopic investigation, DNA binding and nuclease activities, antioxidant and antimicrobial studies. N. Ganji, A. Rambabu, N. Vamsikrishna, S. Daravath, Shivaraj*, J MolStruct, 1173 (2018) 173-182.

- 17. Three mononuclear Cu(II) complexes based on p-tolylmethanamine Schiff bases: In-vitro cytotoxicity, DNA binding ability, Nuclease activity and antibacterial studies. D. Shiva Shankar, AveliRambabu, NarendrulaVamsikrishna, NirmalaGanji, SreenuDaravath and Shivaraj*, Inorganic Chemistry Communications, 98 (2018) 48-57. Impact Factor-1.79.
- 18. Synthesis, characterization, DNA binding ability, nuclease efficacy and biological evaluation studies of Co(II), Ni(II) and Cu(II) complexes with benzothiazole Schiff base. SreenuDaravath, NarendrulaVamsikrishna, NirmalaGanji, KadtalaVenkateswarlu and Shivaraj*, Chemical Data Collectons, 17-18 (2018) 159-168.

- 19. Synthesis, Spectral Characterization, DNA Binding, Cleavage and Biological Evaluation on Co(II), Ni(II) and Cu(II) Complexes of Substituted Isoxazole Schiff Bases. Gali Ramesh, Marri Pradeep Kumar, AveliRambabu, NarendrulaVamsiKrishna, SreenuDaravath and Shivaraj*. Asian Journal of Chemical Sciences. 4 (3) (2018) 1-20. Impact Factor-3.6.
- 20. Crystal structure, DNA binding, cleavage, antioxidant and antibacterial studies of Cu(II), Ni(II) and Co(III) complexes with 2-((furan-2-yl) methylimino)methyl)-6-ethoxyphenol Schiff base: KadtalaVenkateswarlu, Marri Pradeep Kumar, AveliRambabu, NarendrulaVamsikrishn, SreenuDaravath, Krishnan Rangan, and Shivaraj*. Journal of Molecular Structure, 1160 (2018) 198-207. Impact Factor-2.12.
- Mixed Ligand Complexes Derived from Semicarbazone Schiff Base and Heterocyclic Ligands: Structure and Antimicrobial Activity, K. Ganga Rajam, Marri Pradeep Kumar, K. JyothiKiran, and Shivaraj*, Russian Journal of General Chemistry, 88 (2018) 1000–1008.
- 22. DNA incision evaluation, binding investigation and biocidal screening of Cu(II), Ni(II) and Co(II) complexes with isoxazole Schiff bases. N. Ganji, V.K. Chityala, M.P. Kumar, A. Rambabu, N. Vamsikrishna, S. Daravath, Shivaraj, J. Photochem. Photobiol. B Biol, 175 (2017) 132-140.

- Crystal Structure, Spectral Characterization, Biological and DNA Binding Studies of Cu(II) Mixed Ligand Complexes of 5-Amino-3, 4-Dimethyl Isoxazole Schiff Bases and Heterocyclic Compounds. Ch. Vijay Kumar, M. Pradeep Kumar, NirmalaGanji, D. Anil Kumar, S.S. Singh, P. Raghavaiah and Shivaraj*. *Russian Journal of Coordination Chemistry*. 43 (5) (2017) 275-289.
- 24. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of -amino benzothiazole derivatives. Sreenu Dravath, Marri Pradeep Kumar, NarendrulaVamsikrishna, Nirmala Ganji, and Shivaraj*. Journal of Molecular Structure, ISSN: 0022-2860, (2017), 1144 (15) 47-158, DOI: 10.1016/j.molstruc.2017.05.022, (Impact Factor-3.8).

- 25. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of -amino benzothiazole derivatives. SreenuDravath, Marri Pradeep Kumar, NarendrulaVamsikrishna, NirmalaGanji, and Shivaraj*. Journal of Molecular Structure. 1144 (15) (2017) 47-158,. Impact Factor-2.12.
- 26. DNA interactions and biocidal activity of metal complexes of benzothiazole Schiff bases synthesis, characterization and validation. NarendrulaVamsikrishna, Marri Pradeep Kumar, Gali Ramesh, NirmalaGanji, SreenuDravath and Shivaraj*. Journal of Chemical Sciences. 129 (5) (2017) 609-622. Impact Factor-1.49.
- 27. Cu(II) complexes with 4-amino-3, 5-dimethyl isoxazole and substituted aromatic aldehyde Schiff bases: Synthesis, crystal structure, antimicrobial activity, DNA binding and cleavage studies. Marri Pradeep Kumar, NarendrulaVamsikrishna, Gali Ramesh, N.J.P. Subhashini and Shivaraj*. Journal of Coordination Chemistry. 70 (8) (2017) 1368-1388,. Impact Factor-1.68.
- 28. DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy) benzothiazole Schiff base ligands. AveliRambabu, Marri Pradeep Kumar, SomapanguTejaswi, NarendrulaVamsikrishna and Shivaraj*. Journal of Photochemistry & Photobiology, B: Biology 165 (2016) 147-156. Impact Factor-4.06.

- 29. Synthesis, Structural, DNA Binding and Cleavage Studies of Cu(II) Complexes Containing Benzothiazole Cored Schiff Bases, SomapanguTejaswi, Marri Pradeep Kumar, AveliRambabu, NarendrulaVamsikrishna and Shivaraj*. Journal of Fluorescence. 26 (6) (2016) 2151-2163. Impact Factor-1.91.
- 30. DNA Binding, Cleavage and Antibacterial Activity of Mononuclear Cu(II), Ni(II) and Co(II) Complexes Derived from Novel Benzothiazole Schiff Bases. N Vamsikrishna, M.P. Kumar, S. Tejaswi, A. Rambabu and Shivaraj*. Journal of Fluorescence. 26 (4) (2016) 1317-1329. Impact Factor-1.91.
- 31. Synthesis, crystal structure, DNA binding and cleavage studies of copper(II) complexes with isoxazole Schiff bases, Marri Pradeep Kumar, SomapanguTejaswi, AveliRambabu, Veerendra Kumar A. Kalalbandi and Shivaraj*. Polyhedron. 102 (2015) 111–120. Impact Factor-2.284.

S.No	Title of the Project And sanction letter No.	Funding agency	Sanctioned Amount (Rs. Lakhs)	Year/Duration	Name of Supervisor	No. of Research Fellows/ Man Power	Objectives	Outcomes
19	Thiolation of heteroaromatics via C-H activation	UGC-BSR Startup Grant	6.0 lakhs	2015-2017	Dr. Raju J. Reddy		Objective-1: Cs2CO3- Mediated Vicinal Thiosulfonylation of 1,1-Dibromo-1- Alkenes with Thiosulfonates. Objective-2: Sequential One-Pot Approach for Thiolation of Imidazo[1,2- a]pyridinesvia C-H activation Under Transition-Metal Free Conditions	(i) We have successfully developed a novel Cs_2CO_3 -mediated vicinal thiosulfonyl- ation of 1,1-dibromo- alkenes with thiosulfonates under mild reaction conditions. (ii) A simple and metal-free sequential one-pot protocol has been developed for the synthesis of varied C3- functionalized imidazo[1,2- <i>a</i>]pyridines.
20	Cascade C-H Functionalization for Synthesis of <i>N</i> , <i>S</i> - Heterocycles	DST- SERB/ECR	33.10 lakhs	2016-2019	Dr. Raju J. Reddy	1	The central theme of proposed project will cover the following key objectives: 1) To develop newer methodology for synthesis of functionalised phenothiazines in general via	 (i) We have successfully developed a convenient protocol for the synthesis of allyl thiosulfonates. A range of aryl/heteroaryl/ aliphatic allyl bromides and sodium

			cascade C-H	arylthiosulfonates
			functionalization	were readily
			strategy. The	assembled to furnish
			scope further	allyl thiosulfonates.
			extended to	(ii) We have
			synthesis of	successfully
			bioactive	developed a highly
			promazines and	regioselective,
			, phenothiazine-	iodine-mediated
			proline derived	sulfonylation reaction
			oranocatalysts. 2)	of NH-1,2,3-triazoles
			To determine for	using sodium
			synthesis of the	sulfinates and
			dibenzothiazepine	thiosulfonates to
			derivatives via	provide N-
			ortho-thiolation	sulfonylated triazoles
			and	in moderate to high
			intramolecular N-	yields. This protocol
			arylation. The	operationally simple
			substrate scope	and possesses a wide
			will explore and	substrate scope,
			applicability for	permitting the
			synthesis of trade	synthesis of a range
			marketed drugs,	of N2-sulfony
			clotiapine and	triazoles which car
			fumarate of	be difficult to prepare
			quetiapine. 3) The	by other methods.
			construction N-	(iii) We have
			fused type	developed
			heterocycles can	successfully azide-
			be prepared	cycloaddition
			through cascade	reaction of
			C-S and C-N	nitroallylic alcohols
			bonds formation	acetates and sulfones
			and readily	were easily converted
			extended to	into a diverse NH-
			imidazo[2,1-	1,2,3-triazoles in
			<i>b</i>]thiazole moiety	
			modification	good to high yields. This metal-free
			allow valuable	
				protocol is

							products. 4) To demonstrate the synthesis and utility of chiral N,S-heterocycles in asymmetric organocatalysis will be central to establish secondary amine derived multisite catalyst systems. 5) The diverse N,S-heterocycles will study of their pharmacological activities and depending on the biological data will be re-design and synthesize the modified structures to improve their activities.	straightforward, operationally simple and various functional groups were tolerated.
21	Oxidative Cross-Coupling for Divergent Synthesis of N-Heterocycles	CSIR (02(0340)	28.10 lakhs	2018-2021	Dr. Raju J. Reddy	1	Objective 1 is to develop newer methodology for synthesis of functionalised indoles and pyrazine fused pyrroles via N- alkenylation and oxidative cyclization. Objective 2 is to determine for synthesis of the 1,2- dihydroisoquinoline derivatives by means	(i) We have successfully developed a metal- free synthesis of β - keto sulfones and β - keto thiosulfones using β -iodovinyl sulfones under mild reaction conditions. For the first time, β - iodovinyl sulfones served as indirect enolate in the presence of NaOAc.

1.

		N-arylation and	(ii) Palladium
		intramolecular	catalyzed synthesis of
		oxidative C-C	3-
			sulfonylbenzofuranes
		coupling.	
		Objective 3 is the	from the β -iodovinyl
		construction 1,4-	sulfones with 2-
		benzodiazepines and	bromophenols via a
		fused imidazoles can	oxy-Michael addition
		be prepared through	and Heck-type
		oxidative tandem C-N	reaction has been
		bond formation.	developed. A facile
		Objective 4 is to	construction of 2,3-
		develop an	disubstituted
		intramolecular	benzofuranes has
		oxidative cross-	been achieved in a
		coupling for a facile	one-pot operation and
		construction of 2-	a wide variety of 2,3-
		benzazpine	disubstituted
		derivatives.	benzofuranes were
			accessed in good to
			high yields.
			(iii) A unique
			phenylboronic acid-
			catalyzed
			dimerization-
			sulfonylation of S-
			benzyl thiosulfonates
			has been disclosed. A
			metal-free tandem
			construction of S–S
			and C–S bonds is an
			operationally simple
			method to access a
			wide range of benzyl
			disulfanylsulfone
			derivatives in high to
			excellent yields.
			Moreover, the
			robustness of this
			tandem

							transformation has been demonstrated
22	Design and Development of Atom Transfer Radical Cyclization (ATRC): Thiosulfonylation of Unactivated Carbon- Carbon Multiple Bonds	SERB- CRG	40.07 lakhs	2021 to 2024	Dr. Raju J. Reddy	Objective 1 is to develop 'O-propargyl benzylthiosulfonates' via vicinal thiosulfonylation by means of nickel and photoredoxcocatalysis to construct benzoxathiepines in general. Objective 2 is atom transfer radical cyclization (ATRC) extended to 'O-allyl benzylthiosulfonates' under the catalytic influence of nickel and organic dyes for the formation of benzoxathiepine derivatives. Objective 3 is to explore nickel- photoredoxcatalysed ATRC through exo- trig ring closure reaction of 'O-vinyl benzylthiosulfonates' to produce benzoxathines.	 (i) The rationally designed propargylic alcohol-containing 1,6-enynes were prepared for the first time. A general and highly efficient sulfonyl radical- triggered cycloannulation of 1,6-enynols with sodium sulfinates was achieved for the tandem construction of C-S and C-C bonds in a single operation. (ii) Visible-light induced sulfonylative- cycloannaulation of 1,6-enynols with sulfinic acids using 4CZIPN as a photocatalyst was also established. An efficient sulfonyl radical-triggered cycloannulation of 1,6-enynols with sulfinic acids was achieved for the synthesis of 2,3- disubstituted benzofurans in moderate to high yields. Very recently,

				we have found an interesting reactivity of secondary acetate- derived 1,6-enynols
				under the same reaction conditions.

S. No	Title of the	Funding	Sanctioned	Duration	Supervisor/Principa	No. of	Objectives	Outcomes
	Project and	Agency	amount (in	of the	l Investigator/Co-	research		
	Sanction Letter		lakhs)	Project	investigator	fellows/m		
	No.					an power		
1	Green	Science	26,46,600/-	3 years	Prof. Yadagiri	01	Objective-1:	Green Synthesis of
	Synthesis of	and			Bhongiri		To the development of	Nitrogen and Oxygen
	Nitrogen and	Engine					more isoquinolone	Contains Heterocyclic
	Oxygen	ering					directed ortho C-H	Compounds via Novel
	Contains	Resear					activation/annulation	Methodologies and
	Heterocyclic	ch					reactions for the synthesis	their Biological
	Compounds	Board(of polycyclic	Evaluation.
	via Novel	SERB)					isoquinolone derivatives	Here's a summary of
	Methodologies						is highly desirable.	the typical outcome:
	and their						Objective-2 :	<u>Optimized</u>
	Biological						To develop the	Synthesis:Heterocycli
	Evaluation						transitional metal	c compounds
	Sanction Letter						mediated the new and one	containing nitrogen
	No.						pot, an efficient synthetic	and oxygen are
	SUR/2022/001						methods for	important in
	828; dated 06						functionalized indole	pharmaceuticals,
	July 2023.						fused pyrano[3,2-	agrochemicals, and
							c]chromen.	materials science.
							Objective-3:	Green synthesis
							To develop the	methods aim to create
							transitional metal	a wide range of these
							mediated the new and one	compounds efficiently.
							pot, an efficient synthetic	The use of template-
							methods for	assisted or cascade
							functionalized fused	reactions can enable
							indoles.	the rapid construction
								of complex
								heterocyclic structures
								with high specificity.
								Biological Testing :

				The biological activity
				of the synthesized
				heterocyclic
				compounds is crucial
				for their potential
				applications.
				Evaluation often
				includes testing for
				antimicrobial,
				antitumor, anti-
				inflammatory or other
				bioactive properties.
				Compounds with
				promising biological
				activities can be
				further optimized
				through structural
				modifications, guided
				by green synthetic
				principles.

S.	. No	Title of the	Fundin	Sancti	Dur	Supervisor/P	No. of	Objectives	Outcomes
		Project	g	oned	atio	rincipal	research		
		and	Agency	amoun	n of	Investigator/	fellows/man		
		Sanction		t (in	the	Co-	power		

	Letter No.		lakhs)	Pro	investigator			
1	Letter No. Design, and Synthesis of Nitrogen - Containi ng Heterocy cles and In Vitro Studies of their Cytotoxi c Activity. Sanction Letter No. SERB- SUR/202 2/002286 Dated: 14 Nov 2023.	Scienc e and Engin eering Resear ch Board (SERB)	lakhs) 27,40, 600/-	Pro ject 3 yea rs	investigator Prof Boda Sakram	01	Objective-1: To develop newer methodology for synthesis of novel 6-(3-bromo-2-fluoroaryl)-9- aryl-[1,2,4]triazolo[4,3-a][1,8] naphthyridines Objective-2: Synthesis of fused 6-(2-chloro-6-fluoroaryl)-9-aryl- imidazo[1,2- a][1,8]naphthyridine and 3-(6-(2-chloro-6- fluoroaryl)imidazo[1,2- a][1,8]naphthyridin-9-yl)- 2Hchromen-2-onederivatives catalyzed by DABCO. Objective-3: Synthesis and characterization of novel 4-((3- aryl-1,8-naphthyridin-2-yl) amino)phenol derivatives. Objective-4: Synthesis of 6-aryl- 8H-benzo[5,6][1,2,4]triazino[4,3- a][1,8]naphthyridin-11-oles and 7-aryl-5H- naphtho[2',1':5,6][1,2,4]triazino[4, 3-a][1,8]naphthyridin-15-ol derivatives. Objective-5: Environmentally benign synthesis of 1,8- naphthyridinyl-4-thiazolidinone derivatives.	The synthesis of 1,8- naphthyridines derivatives is an area of significant interest in medicinal chemistry due to their diverse biological activities. Here's a summary of the typical outcome: Optimized Synthesis: Improved methods for synthesizing 1,8- naphthyridines with higher yields, fewer steps, and more functional group compatibility are often key outcomes. Biological Testing: Comprehensive in vitro and in vivo testing to assess the efficacy, toxicity, and pharmacokinetic properties of new compounds. Successful candidates might progress to further preclinical or clinical development. Such as anti- tumour, anti-cancer, anti-psoriasis, anti-malarial and anti HIV and molecular docking studies. Valuable insights into their
								molecular docking studies. Valuable insights into their potential as therapeutic agents, leading to further research and development in the field of medicinal chemistry.

			mentioned in objectives 1-6 for their possible biological activities such as anti-tumour, anti-cancer, anti-psoriasis, anti-malarial and anti HIV and molecular docking studies.	

25	Design and	SERB-	30.0	2023-	Dr. T	1	Expected Output and Outcome of the proposal :
	synthesis of novel	SURE	lakhs	2026	Gangadhar		Functionalization of chromones and quinolines allows attaining chemical diversity suitable for
	2-aminochromone				thalari		either improving the pharmacological profile or discovering new biological studies.
	and 2-						Carboxamides derivatives are widely used in the search for anti-asthmatic, anti-inflammatory, anticoagulant, anticancer, and antimicrobial activities. As a result, their application for
	aminoquinolinone-						neurodegenerative diseases, such as Parkinson was recently highlighted. Therefore, we would
	containing 1,2,3						like to synthesize novel chromone and quinolines carboxamide derivatives with various amino acids bearing electron-donating and electron-withdrawing substituent's in different positions
	triazol, Isoxazole,						of the chromone and quinolines ring by using green chemistry mode. We will design novel
	1,2,4-						heterocyclic analogues of 2-amino chromones and 2-aminoquinolinones using a computational
	oxadiazol, and						tool based on synergistic/conjugate effect using triazoles, isooxazoles, oxadiazoles and carboxamides rings which would exhibit better selectivity against towards anticancer anti-HIV
	carboxamides:						receptors. To understand the interaction and binding of the synthesized compounds,
	Biological						molecular docking will be performed by using Autodock Vina program. Molecular docking studies will reveal that all the synthesized compounds bind to the binding site of targeted
	evaluation for anti-						sites, and it will give computational binding affinity. Data compilation: Results obtained from
	HIV and anti-						the various phases of work will be compiled and documented periodically, and the manuscript
	cancer activities						or patent will be published in due course.

1.

1. Title of the project: Synthesis of polycyclic aromatic hydrocarbons for organic field effect transistor applications

2. Principal Investigator(s) and Co-Investigator(s): Dr. Someshwar Pola (PI) Prof. M. Vithal Dr. M. Sreenath Reddy

3. Implementing Institution(s) and other collaborating Institution(s): Department of Chemistry UCS, Osmania University Hyderabad-07

4. Date of commencement: 01-11-2015

5. Planned date of completion: 31-10-2018

6. Actual date of completion: 31-10-2018

Title of the Project: Synthesis of polycyclic aromatic hydrocarbons for organic field effect transistor applications

Objectives:

- Synthesis of new dibenzocoronenes, dithiophenecoronenes and tetrabenzo-diimidazocoronenes. Synthesis of new fluoro, chloro, methoxy and methyl substituted dibenzocoronenes, dithiophenecoronenes and tetrabenzodiimidazocoronenes.
- Characterization of the newly synthesized compounds by from spectral studies like NMR (1H and 13C), mass spectra, Cyclic Voltammetry, TGA, DSC, UV-visible, XRD and AFM.
- > Comparison of transistor and structural properties new fluoro, chloro, methoxy and methyl substituted dibenzocoronenes,
- > dithiophenecoronenes and tetrabenzo-diimidazocoronenes with their parent compounds
- Sublimation of final compounds to get pure materials and grow the crystals from gas flow technique. Fabrication of devices

by using these single crystals and collect the mobility.

> The results obtained from experimental to be compared with theoretical studies.

Outcomes:

- The synthesized coronenes, Tetraimidazocoronene (TIC), Tetraimidazobenzocoronene (TIBC), Tetraimidazodibenzocoronene (TIDBC), Tetrapyrazolocoronene (TPC), Tetrapyrazolobenzocoronene (TPBC), and Tetrapyrazolodibenzocoronene (TPDBC), have good physicochemical properties and are supported with DFT/TDDFT studies.
- > On an ODTS-SiO₂ substrate at room temperature, the reported compounds were utilized to fabricate organic thin-film transistors (OTFTs) and shown hole mobilities from 0.16 to 0.44 cm²/Vs and 0.39 to 0.71 cm²/Vs respectively, with an on/off ratio of 10^2 to 10^6 .
- Thin-film transistor based on TPDBC as the channel material displays a very high electron mobility of 1.94 cm²/Vs and an on/off ratio of 10² respectively.
- These compounds are further supported by DFT/TD-DFT studies, providing insights into their structural and electronic properties.
- > The development of an OFET sensor for glucose detection offers a promising approach for both invasive and non-invasive monitoring methods, with potential for high sensitivity and specific detection.
- > OFETs can be manufactured at relatively low costs compared to conventional silicon-based sensors.

Name of PI	Grants allotted (Rs. in Lakhs @ 2017 - 21)
Prof. Shivaraj	4.0
Prof. M. Vijjulatha	4.0
Prof. P. Leelavathi	4.0
Dr. K. Shiva Kumar	3.20
Dr. Raju Jannapu Reddy	3.87
Prof. P. Veera Somaiah	4.0
Prof. A.K.Durga Bhavani	4.0
Prof. P.Vijay Kumar	3.08
Prof. Ch. Sarala Devi	4.2
Dr. D.A.Padmavathi	3.04
Prof. B. Satyanarayana	4.0
Prof. D. Ashok	4.0
Dr. N.J. PrameelaSubhashini	4.0
Dr. P.V. Anantha Lakshmi	4.0
Dr. A. Hari Padmasri	4.0
Prof. Ch. Arabham Lincoln	3.0
Prof.M. Vittal	4.0

Consumable grants sanctioned for individual faculties under OUDST-PURSEprogramme

κ÷.

S. No.	Name of the PA	Supervisor	Fellowship awarding Agency
1	N. Praveen Kumar	Dr. K. Shiva Kumar	CSIR-EMR-II
2	Vemula Saiganesh	Dr. Raju Jannapu Reddy	CSIR-EMR-II
3	J. Jagadesh Kumar	Dr. Raju Jannapu Reddy	SERB-CRG
4	A. Haritha Kumari	Dr. Raju Jannapu Reddy	SERB-CRG
5	Barla Manohar	Prof. Yadagiri Bhongiri	SERB-SURE
6	Ergurala Naveen	Prof. Boda Sakram	SERB-SURE
7	Kolishik Shruthi	Dr. T Gangadhar thalari	SERB-SURE

Name of the project associates (PA) under sponsored projects